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We describe inequalities relating to the interface between coexisting phases of 
Ising ferromagnets. Some implications for the nature of the roughening transi- 
tion are discussed. 
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1. INTRODUCTION 

We consider an Ising spin system (oi = --- 1) on ~d with nearest-neighbor 
interactions; the Hamiltonian in a box A with boundary conditions (b.c.) b 
specifying oj = ~., j ~ A, is 

<y) cA  <0") 
i E A , j E A  c 

A will be taken to be a parallelipiped, 

AL,M = {iE~_al-M < il < M,-L-<< i s < L - 1 , ~  = 2 , . . . , d )  

and we shall consider the following b.c.: 

(1) + ( - ) ,  i.e., { . =  + 1 ( - 1 ) ;  
(2) ___, i.e., ~ =  + l i f j l ~ 0 a n d { = - l i f j l < 0 ;  
(3) 0, i.e., ~ = 0; 
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(4) *, oj = + 1 if Jl > 0 or Jl = 0 and j z  > 0, ~ = - 1 if J1 < 0 or 
Jl - 0 and j2 < 0. 

The limits M ~ o0 and L ~ oo for the Gibbs distributions and expectation 
values are denoted, respectively, by 

pL b ' pb and ( )bL, ( )b 

The critical temperature in d dimensions, Tc(d ), is defined uniquely (1) 
by (oi )  + = - ( e l ) -  -- m * ( T )  > 0 for T < Tc(d ) and pb independent of b 
for T > Tc(d). The  states ( )+ and ( ) -  are translation invariant and 
extremal. It is known that for d = 2, ( ) •  = ( 1 / 2 ) ( ( ) +  + ( ) -  ), V T  > 0, 
while for d > 3, ( )*-- is not translation invariant for T < T ~ ( d -  1). (2) 
Furthermore, for T sufficiently small, the state ( ) •  in d >/3 has a sharp 
"Dobrushin interface" located near i 1 --0,  which separates the pure + 
phase at il >> 0 from the pure - phase at i I << 0. (s) This interface is defined, 
after associating configurations and contours as usual, as the "open" 
connected contour that extends outside the box. The difference between 
d -- 2 and d > 3 at low temperatures is that in the former case, the location 
of this interface fluctuates with an amplitude proportional ~/L as L--> cc,(4) 
while in the latter case, the fluctuations are exponentially small with L. In 
both cases, however, the "intrinsic width" of this interface is exponentially 
small at low temperatures, fld >> 1. (5) 

We define the roughening temperature TR(d ) as the lowest tempera- 
ture above which P • is translation invariant, i.e., P -+ = (1 /2) (P  + + P - ), 
if T > Tg (d). It follows then from Ref. 2 that 

L ( a -  1) < TR (d) < To(a) 

It is natural to ask whether TR(d ) is strictly less than Tc(d ). This is clearly 
so for d = 2 where T R = 0, (4) but  there are, however, no rigorous results at 
present about whether T R < T~ for d > 3 with the inequality expected for 
d = 3 and the equality for d >/4. (6) It is further expected that if T R < T c 
then, as in d = 2, (7) there are only translation-invariant states above T R. 

Also unknown, even on the heuristic level, is the nature of the changes 
occurring in the structure of the interface at T R. We shall describe some 
inequalities relating to this question in Section 2. 

It has also been suggested (s) but not proven that the "step energy" o, 
corresponding to the difference (divided by La-2) ,  between the free energy 
for * b.c. and _ b.c., serves as an order parameter for the roughening 
transition, i.e., defining T* by the relation o > 0 for T < T*, o = 0 for 
T > T* then T* = T R . While we cannot prove or disprove this, we show in 
Section 3 that T* satisfies the van Beijeren inequalities for T R, i.e., 
T c ( d -  1) < T*(d)  < T,(d) .  

Finally we consider the solid-on-solid (9) model, which corresponds to 
making the nearest-neighbor interaction infinitely strong in the 1-direction. 
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For this model, Tc(d ) = ~ for all d, while it is known that TR(2 ) = 0 ,  (9) 

and 0 < TR(3 ) < ~.(10) We show that for d/> 4, TR = ~ for this model. 
All our results are thus consistent with expectations. 

Proofs are given in Section 6. The proofs make use of a relation 
between percolation and long-range order. This is discussed in Section 5. 

2. FLUCTUATIONS OF THE INTERFACE 

In order to analyze the changes which may occur in the structure of 
the interface at T R, let us consider first the geometric structure of the pure 
phases (in zero external field). At low temperatures a typical configuration 
in the + state consists of a "sea" of + spins in which there are some 
clusters of - spins, i.e., sites connected by nearest neighbor (n.n.) bonds on 
which o i = - 1. As the temperature is raised, there may appear an infinite 
cluster of - spins, i.e., there is percolation. Tp(d), the temperature at which 
this happens, is called the percolation temperature. Te. is defined similarly 
but with * clusters of - spins, i.e., sites connected by n.n. or next-n.n. 
bonds (length of a bond is < ~ ' ) .  We now formulate our first result: 

Let P ~ ( i , j )  be the probability that a path along the lattice bonds 
joining i and j crosses the Dobrushin interface an even (possibly zero) 
number of times, then 

lim P ~  ( i , j )  >1 ((oioj) + +(o io j )~  + (oioj) ~ (1) 
L---~ ~ 

For T > T n the right hand side of (1) is equal to 2(oioj)~ + (oiaj)~ 
Choosing now i and j such that i 1 = - J ]  ~ ~ implies that for T R < T 
< To, when ( o i o j ) ~  0 for l i - j l - ->  ~ ,  the interface has some 
probability to be "at infinity" in the limit L ---> ~ .  

A much stronger result showing that the interface is "at infinity" with 
probability one holds if TR < Te.. More precisely let P~(A0) be the 
probability that the interface intersects a fixed box A0. Then for 

T R < T < Tp,, lim P #  (A0) = 0 (2) 

Conversely, if (2) holds then T >  T n. (2) is true in d = 2  for T <  Tc 
= Te..(~l) We expect T R < Te. in three dimensions; numerically Te(3 ) 
0.95 Tc(3).~12) 

Remark .  The structure of the interface in three dimensions is pre- 
sumably as follows: At low temperatures the interface is essentially flat 
(localized) and the state P -+ is not translation invariant. At Tn ~ 0.57 Tc,(6) 
( )•  becomes translation invariant and if we assume T n < Te. then for T 
just above TR the interface fluctuates out of sight. Between Tp. and T~ the 
interface still fluctuates but has a nonzero probability of being "local- 
ized"; it is very "thick." Above T~, we have no results but we expect the 
interface to "fill" the whole space. 
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3. THE STEP ENERGY 

There is a quasithermodynamic quantity, called the step energy, a (s) 
which is expected to characterize the roughening transition in the same way 
that the surface tension "r characterizes the phase transition: "r is known (i3) 
to be nonzero iff there is a spontaneous magnetization. Similarly one 
conjectures that o is nonzero iff the state P -+ is nontranslation invariant. 
We recall that r is defined, letting L 0 = 2L, as 

~-= - lim lim LI-dlog[Z~,M(Z~,~)-I 1 (3) 
L--> or M - - >  oo 

where Z b = ~o,=_+lexp(- f lH~)  is the partition function. Similarly t, is 
defined, assuming that the limits exist, by 

o = lira lim L2-dlogZ~,M(Z~.M) -1 (4) 
L---> cr M - - >  oo 

We prove the following bounds: 

t,L,M(d ) >/ "rL,M(d- 1) >1 0 (5) 

lim OL,M(d ) < L2-d2flJ ~,, (oi) ~ (6) 
M ' - - > ~  i2 = - 1 

i 1 = 0  

Here "rt, M and OL, M are the right sides of (3) and (4) before the taking of 
limits. 

This shows that o ~ 0  for T <  Tc(d-  1) and o = 0 for T > T~(d). 
This result extends also to the case where we let the interaction J be 
anisotropic. 

4. THE SOLID-ON-SOLID MODEL 

If we let the nearest-neighbor coupling go to infinity in the 1-direction 
while keeping it fixed in the other directions we obtain the solid-on-solid 
(SOS) model of an interface. In that limit the + b.c. state becomes frozen 
in the configuration o; = 1 everywhere so that T c = ~ and, for _ b.c. the 
SOS state is characterized by configurations with only one contour, namely, 
the interface, which crosses once and only once every line in the 1- 
direction. After taking the limit M - ~  ~ ,  this state can be equivalently 
described by a set of integer-valued spins ~x with x running through a 
( d -  1)-dimension cube L with vertices in the hyperplane i 1 = 0 a n d ~  x 

7/+ 1//2 being the height of the interface above x. The interaction 
becomes 

- / / =  2s  (7) 
<xy> 

with zero boundary conditions ~x = 0 for x ~ L C Z d-l .  For  d = 2 (i.e., 
d = 1 for the ~ variables) this is the Temperley model. (9) It  can be solved 
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exactly: T R = 0 as in the Ising model; one defines T R now as the infimum 
over the temperatures where (q2) diverges as L ~ o0. We can also define 
T R as the temperature where ((~0 - ~:,)2)L diverges when first L and then x 
go to infinity. The two definitions are equivalent for d = 2 and presumably 
also in higher dimensions. Using the latter definition, Fr6hlich and Spencer 
proved 0 < T R < o0 for d = 3. (l~ For d />  4, we consider a box AL, M with 
periodic boundary conditions on the lateral sides i, = - L  or L -  1, a 
= 2  . . . .  ,d ,  + b.c. at i I = M  and - b.c. at i I = - M .  This leads to 
periodic b.c. for the SOS model. In order to define properly finite volume 
expectation values in this case, we first add a mass term -m2~:, ,h~ to the 
Hamiltonian (7) that we remove after taking the thermodynamic limit 
L ~ o0. We show for d/> 4 that 

< o0 (8) 

Uniformly in x, L, and m for all T < o0. 

5. PERCOLATION AND LONG-RANGE ORDER 

Before proving (1), we state a related result connecting percolation and 
long-range order whose proof is similar to the proof of (1). Let R A be the 
probability, in the state with 0 b.c. on the box A, that the sites i and j 
belong to the same cluster of (either + or - )  spins then 

RA( i , j )  >1 2 (o ia j )~  + (~.O)-) 0] (9) 

To prove (9) we write 

<oioj) ~ = R a ( i , j )  + (o io j ) ' i l  - RA( i , j )  ] 

where (oioj) '  is the conditional expectation value of aim in the state pO 
given that i and j do not belong to the same cluster. Of course, we use the 
fact that if i and j belong to the same cluster, then oioj = + 1. We claim 
that (oioj) '  < - ( a i o j )  ~ and this will finish the proof. Indeed, if i a n d j  do 
not belong to the same cluster there must be a contour separating i and j .  
We write (o,.~) A = ~vP(y ) (o io j )  v where we condition on the first such 
countour y that one crosses while going from i to j .  Clearly o i is equal to the 
sign of spins on the side of y containing i, which is the opposite of the sign 
of the spins on the j side of 7, and we therefore have 

where ( )~j (v)  is the expectation in the connected component of the 
complement of y that conta ins j  with the spins on the boundary of y equal 
to + 1. By F.K.G. inequalities 04~ (oj)~j(v) >1 ( o j l a  , = + 1)~ where ( o j l o  i 
= + 1) ~ is the expectation value conditioned on o~ being + 1. But this 
equals ( oioj) ~ 
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6, PROOFS 

Bricrnont et al, 

6.1. Fluctuations of the Interface 

In order to prove inequality (1), we follow the same idea as in Section 
5. We write 

+ l !  + t +~ (OiOj)-- = (OiOj) (1 - PF ) + (o, oj) PC (10) 

where ( ) '  (respectively, ( ) " )  is conditioned on the fact that a path 
connecting i and j crosses the interface an even, including zero (respec- 
tively, an odd), number of times and P ~  is the corresponding probability. 
Now if the interface crosses at all any path from i to j ,  it means that i a n d j  
lie in different connected regions of the complement of this interface. These 
regions have pure + or - b.c. and, if the number of crossings is odd the 
signs of the b.c. on the two regions are opposite. So, if one conditions on a 
particular interface, 

= - ( o i ) a , ( x )  (O/)A~<X) 
where Ai(X ) is the component containing i with + b.c. By Griffiths' 
inequalities ( ~ 5) 

( o ; ) L < o j Z ,  <oi , j )2  > (o oj)  

This combined with (oioj)' < 1 and inserted into (10) finishes the proof. 
Now we prove (2). Let T > T R. Then 

lim P ~ =  ( 1 / 2 ) ( e  + + P - )  
L---~ ~ 

at least for a.a. temperatures. (~6) Notice that the boundary of a contour is 
made of two * clusters one of + and one of - spins. Therefore P~(Ao) 
< Ps (there exists a * cluster of - spins intersecting A 0 and 7 / \ A  1) where 
A 1 is any box in A L containing Ao. Since this is a local event its probability 
converges to the infinite volume probability, which goes to zero (in the P + 
and P - states) if T < Te, when A 1 ---> ~ .  

On the other hand, if limPg+(A0) = 0, take ( 9 )  c A 0 and write 

<o,..j>r + = -+ (Ao) + (o/ojSdl '  - eL+- (Ao)) 

where ( ) '  (respectively, ( ) " )  is the expectation conditioned on the 
interface not intersecting (respectively, intersecting) A 0. (oioj)}. >/(OgOj) + 
because all points in A o lie in some connected part of the complement of 
the interface, with pure + or - b.c. So in this case l imL+~(a i~ ){  
/> (oioj) + and this implies the translation invariance of ()_+.(16) 
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6.2. The Step Energy 

In order to prove (5) let us define a r , g ( d , h )  by adding to the 
Hami l ton ian  an external field 

- h  ~ o i - o  7 with i = ( - i l ,  i 2 . . . . .  id) 
i 1 =  1 

in the definition of Z +- and  Z*, i.e., one puts a field h above the middle 
layer and  a field - h  below it. I t  is easy to see that 

lim O z , g ( d , h  ) = . r z , g ( d -  1) 
h---~ oo 

So the result follows if ( d / d h ) o L , M ( h )  < 0; 

o~,M (h) = B Y~ (<oi> -+ - <o~> -+ ) 
i l =  1 

- B Y, (<o,>* - <r (1 l) 
i l =  1 

In t roducing  the variables t, = o ; -  o,,, qi = oi + zz, i I # 0, q~ = oi for 
i I = 0 with i = ( -  il, i 2 . . . .  , ia), (11) equals 

B Y (<r 
i l = l  

where going f rom * b.c. to _+ b.c. consists of replacing some bounda ry  
external fields acting on qi with i~ = 0 by their absolute value. Since the q 
and t variables are negatively correlated, ~2) this decreases the t expectation 
values and the above sum is therefore negative. 

N o w  we prove (6). 
Define oL,M(S) by multiplying all bonds  (~> with i 2 = - 1  and j2 = 0 

by s. By symmetry  oL,M(O ) = 0 and  so we m a y  write 

fo O~,M = N OL,M(S) ds 

= L2-d~ol ~J E (<oioj>: - <tTlioj>*s)ds 
</j> 

i2= - l , j 2 = 0  

i 2 = - 1 j z  = 0 

where in the last inequality we use F.K.G.  (4) inequalities and the fact  that  
the + state dominates  the * state in the F .K.G.  sense. N o w  notice that the 
�9 state is invariant  under  the symmetry  a i --> - a,, where i = (i  1, i 2 . . . . .  id) 
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and i' = ( -  ip - i z - 1 . . . . .  ia). This implies 

<o,>:+ <o,>**=o 
i 2 = -- 1 i 2 = 0 

Also by symmetry E i 2 ~ _  l<Oi>; = Ei2=O<Oi>s.  W e  can write, using the q 
variables, 

E <o;>;= E <q,>; 
i2 = - -  1 i2 = -- 1, i t > /0  

Since the t and q variables are negatively correlated, (2) 

and by symmetry 

So, 

<q,>{ < lim ( q , ) ~  
M--~ oo 

+ + 
lim (o~>~-=-  lim (o~_1}; 

M---> m M - ~  

E <oi>;~< E lim <oi> + 
i 2 = - 1  i 2 = - 1  M--->oo 
l i l[  < M Jill < M 

and on the right-hand side only the terms with i I = M do not cancel Now 

lim ~ lim (o=)~= ~,, (oj) + < ~ ( o j ) + ~  
M - ~ o o  t2 1 M--->m J �9 = _  i 2 = - - 1  i 2 = - - 1  

i l = M  i l = O  i 1 = 0  

which completes the proof. 

6.3. The Solid-on-Solid Model 

In this section we prove infrared bounds for the solid-on-solid model 
in a more general form defined below. This result implies that in dimen- 
sions greater or equal to 3, Eq. (8) holds. 

Description of the Model. At each site of a lattice y/d we associate a 
random variable ~ ~ ~, d here corresponds to d -  1 for the infinitely 
anisotropic Ising model discussed in Section 4. Take A = [ 1 , L ] ]  • [1, 
L2] • �9 �9 �9 X [1, Ld]. We define the Hamiltonian H A with periodic boundary 
conditions: H =  ~]x.ylq>x-%1, where the sum runs over all nearest- 
neighbor pairs of the periodical lattice A. The measure at each site dr(cO) is 
such that finite volume expectations < >A are finite: 

( "  >A = ZT, l f " exp( -  flHA) 1-I dv(e~x) 
x E A  
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where 

zA= f exp(--BHA) II dp(epJ 
x E A  

We shall be interested in the two-point function (0o0x)A. Its Fourier 
transform is 

SA(p) = ~,, (00~x)Aexp(/pX) 
x~A 

where p belongs to the dual lattice of A. 

Proposition: 

SA(p)[2~e ( 1 -  COS pe)] < 2(2d) f1-2 (13) 

where p = (Pe)~= 1 belongs to the dual lattice of A. 

Romarks. (1) The theorem implies that 

-2 ~r d ((eOx-eOy):)<2(2d)fl f'_J'p[~e (1-cOSpe)-l(1-expip(x-y))]  

which is uniformly bounded in x and y for d/> 3. (2) The solid-on-solid 
model corresponds to dr(0) = ~m~6[eO-(m + 1/2)]. (3) The infrared 
bounds are known to hold when ]q~x -q~]  is replaced by Iqsx - 0  ]: in H, y y 
because it is easy to show that the system satisfies reflection positivity. (17,1s) 

In our case we do not know whether reflection positivity holds. 
However, we can still establish the result using as a main ingredient the 
positiviff of the transfer matrix of the system. Our proof follows essentially 
the alternate derivation of the infrared bounds given in the appendix of 
Ref. 17. 

Before going to the proof we first recall the transfer matrix formal- 
ism.(17) 

We write x ~ A as x = (i, a), i -- 1, 2 . . . .  , L 1 and 

a E A ' = [ 1 , L 2 ]  • . . .  •  

Assume dp(0 )=  p(q0dq) (the general case can be obtained as a limit). We 
define 

El ((])a)---~ H p ((J)(i,(~))exp [ - E "l~(i,a)--~(i,a')l] 
~ A '  [a-~'/=l 

F,,. is viewed as a multiplication operator on R M, M = L,:, L 3 . . . .  , L a. We 
also define an integral operator T o on L2(R M) with kernel: 

I I  e x p - / 3 [ r  - r 
aEA' 
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Obviously 

Z A = Tr F i T o -- Tr(T L') 

where T = F1/aTo F~/2 is the transfer matrix associated with the direction 1. 
We finally introduce an averaged spin variable, ~i(g) = ~ g(a)~o,~), where 
g(a) is a function defined on the lattice sites of an hyperplane, s(g) is the 
operator on LZ(R M) given by multiplication by ~0(g). The theorem follows 
from the two following lemmas: 

Lemma 1 (17) : 

0 < 2(1 - cos p]) ~ (e?l( g)e~j( g))exp ip]j 
J 

Lemma 2: 

< 2 T r ( [ s ( g ) ,  [s(g),T]T L'-' } IZ  A 

[s(g) ,  [s (g) ,  T]]  < 2f1-211 gN2T 

Proof. As in Ref. 17 we first note that since s is a multiplication 
operator, it suffices to prove the lemma with T replaced by T o. The 
commutator can then be estimated explicitly by going to Fourier trans- 
forms. 

In momentum space, T O is a multiplication operator by 1-[~2fl(k~ + 
132) -1 and s(g) become -i~,.g(a)(O/Ok.). The double commutator is 
given by 

02 -1] 

= ( -  - ' 4  k '  2 1 2 g(a)g(a) k~ . ( k .  +/32) - (k~,+/32) - '  
( a -~ a '  

-t- ~a Ig(oO[212(k 2 +/32) - 1 -  8k2(k 2 +/32)-1])T 0 

= { 2 ~ [ g ( a ) 1 2 ( k ~ +  /32)-1 --]E a g(a)2ka(kJ +/32) -12 

- ~ 4k~(k~ +/32)-21 g(a)[2 ) To 

< 2II gil2/3 -2T 0 

In the last line we used the positivity of T o. 
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Proof  of  Proposit ion. If we choose g(a) = e 'p'~, Lemmas 1 and 2 
imply 2(1 - cos pl)SA(p) ~< 4f1-2 

Since the direction 1 is arbitrary we get the result by summing over all 
d directions. 
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